Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Exploration of the Biosynthetic Potential of the Populus Microbiome.

Identifieur interne : 000B85 ( Main/Exploration ); précédent : 000B84; suivant : 000B86

Exploration of the Biosynthetic Potential of the Populus Microbiome.

Auteurs : Patricia M. Blair [États-Unis] ; Miriam L. Land [États-Unis] ; Marek J. Piatek [États-Unis] ; Daniel A. Jacobson [États-Unis] ; Tse-Yuan S. Lu [États-Unis] ; Mitchel J. Doktycz [États-Unis] ; Dale A. Pelletier [États-Unis]

Source :

RBID : pubmed:30320216

Abstract

Natural products (NPs) isolated from bacteria have dramatically advanced human society, especially in medicine and agriculture. The rapidity and ease of genome sequencing have enabled bioinformatics-guided NP discovery and characterization. As a result, NP potential and diversity within a complex community, such as the microbiome of a plant, are rapidly expanding areas of scientific exploration. Here, we assess biosynthetic diversity in the Populus microbiome by analyzing both bacterial isolate genomes and metagenome samples. We utilize the fully sequenced genomes of isolates from the Populus root microbiome to characterize a subset of organisms for NP potential. The more than 3,400 individual gene clusters identified in 339 bacterial isolates, including 173 newly sequenced organisms, were diverse across NP types and distinct from known NP clusters. The ribosomally synthesized and posttranslationally modified peptides were both widespread and divergent from previously characterized molecules. Lactones and siderophores were prevalent in the genomes, suggesting a high level of communication and pressure to compete for resources. We then consider the overall bacterial diversity and NP variety of metagenome samples compared to the sequenced isolate collection and other plant microbiomes. The sequenced collection, curated to reflect the phylogenetic diversity of the Populus microbiome, also reflects the overall NP diversity trends seen in the metagenomic samples. In our study, only about 1% of all clusters from sequenced isolates were positively matched to a previously characterized gene cluster, suggesting a great opportunity for the discovery of novel NPs involved in communication and control in the Populus root microbiome. IMPORTANCE The plant root microbiome is one of the most diverse and abundant biological communities known. Plant-associated bacteria can have a profound effect on plant growth and development, and especially on protection from disease and environmental stress. These organisms are also known to be a rich source of antibiotic and antifungal drugs. In order to better understand the ways bacterial communities influence plant health, we evaluated the diversity and uniqueness of the natural product gene clusters in bacteria isolated from poplar trees. The complex molecule clusters are abundant, and the majority are unique, suggesting a great potential to discover new molecules that could not only affect plant health but also could have applications as antibiotic agents.

DOI: 10.1128/mSystems.00045-18
PubMed: 30320216
PubMed Central: PMC6172771


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Exploration of the Biosynthetic Potential of the
<i>Populus</i>
Microbiome.</title>
<author>
<name sortKey="Blair, Patricia M" sort="Blair, Patricia M" uniqKey="Blair P" first="Patricia M" last="Blair">Patricia M. Blair</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Land, Miriam L" sort="Land, Miriam L" uniqKey="Land M" first="Miriam L" last="Land">Miriam L. Land</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Piatek, Marek J" sort="Piatek, Marek J" uniqKey="Piatek M" first="Marek J" last="Piatek">Marek J. Piatek</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jacobson, Daniel A" sort="Jacobson, Daniel A" uniqKey="Jacobson D" first="Daniel A" last="Jacobson">Daniel A. Jacobson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lu, Tse Yuan S" sort="Lu, Tse Yuan S" uniqKey="Lu T" first="Tse-Yuan S" last="Lu">Tse-Yuan S. Lu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Doktycz, Mitchel J" sort="Doktycz, Mitchel J" uniqKey="Doktycz M" first="Mitchel J" last="Doktycz">Mitchel J. Doktycz</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pelletier, Dale A" sort="Pelletier, Dale A" uniqKey="Pelletier D" first="Dale A" last="Pelletier">Dale A. Pelletier</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018 Sep-Oct</date>
<idno type="RBID">pubmed:30320216</idno>
<idno type="pmid">30320216</idno>
<idno type="doi">10.1128/mSystems.00045-18</idno>
<idno type="pmc">PMC6172771</idno>
<idno type="wicri:Area/Main/Corpus">000C21</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000C21</idno>
<idno type="wicri:Area/Main/Curation">000C21</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000C21</idno>
<idno type="wicri:Area/Main/Exploration">000C21</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Exploration of the Biosynthetic Potential of the
<i>Populus</i>
Microbiome.</title>
<author>
<name sortKey="Blair, Patricia M" sort="Blair, Patricia M" uniqKey="Blair P" first="Patricia M" last="Blair">Patricia M. Blair</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Land, Miriam L" sort="Land, Miriam L" uniqKey="Land M" first="Miriam L" last="Land">Miriam L. Land</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Piatek, Marek J" sort="Piatek, Marek J" uniqKey="Piatek M" first="Marek J" last="Piatek">Marek J. Piatek</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jacobson, Daniel A" sort="Jacobson, Daniel A" uniqKey="Jacobson D" first="Daniel A" last="Jacobson">Daniel A. Jacobson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lu, Tse Yuan S" sort="Lu, Tse Yuan S" uniqKey="Lu T" first="Tse-Yuan S" last="Lu">Tse-Yuan S. Lu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Doktycz, Mitchel J" sort="Doktycz, Mitchel J" uniqKey="Doktycz M" first="Mitchel J" last="Doktycz">Mitchel J. Doktycz</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pelletier, Dale A" sort="Pelletier, Dale A" uniqKey="Pelletier D" first="Dale A" last="Pelletier">Dale A. Pelletier</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">mSystems</title>
<idno type="ISSN">2379-5077</idno>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Natural products (NPs) isolated from bacteria have dramatically advanced human society, especially in medicine and agriculture. The rapidity and ease of genome sequencing have enabled bioinformatics-guided NP discovery and characterization. As a result, NP potential and diversity within a complex community, such as the microbiome of a plant, are rapidly expanding areas of scientific exploration. Here, we assess biosynthetic diversity in the
<i>Populus</i>
microbiome by analyzing both bacterial isolate genomes and metagenome samples. We utilize the fully sequenced genomes of isolates from the
<i>Populus</i>
root microbiome to characterize a subset of organisms for NP potential. The more than 3,400 individual gene clusters identified in 339 bacterial isolates, including 173 newly sequenced organisms, were diverse across NP types and distinct from known NP clusters. The ribosomally synthesized and posttranslationally modified peptides were both widespread and divergent from previously characterized molecules. Lactones and siderophores were prevalent in the genomes, suggesting a high level of communication and pressure to compete for resources. We then consider the overall bacterial diversity and NP variety of metagenome samples compared to the sequenced isolate collection and other plant microbiomes. The sequenced collection, curated to reflect the phylogenetic diversity of the
<i>Populus</i>
microbiome, also reflects the overall NP diversity trends seen in the metagenomic samples. In our study, only about 1% of all clusters from sequenced isolates were positively matched to a previously characterized gene cluster, suggesting a great opportunity for the discovery of novel NPs involved in communication and control in the
<i>Populus</i>
root microbiome.
<b>IMPORTANCE</b>
The plant root microbiome is one of the most diverse and abundant biological communities known. Plant-associated bacteria can have a profound effect on plant growth and development, and especially on protection from disease and environmental stress. These organisms are also known to be a rich source of antibiotic and antifungal drugs. In order to better understand the ways bacterial communities influence plant health, we evaluated the diversity and uniqueness of the natural product gene clusters in bacteria isolated from poplar trees. The complex molecule clusters are abundant, and the majority are unique, suggesting a great potential to discover new molecules that could not only affect plant health but also could have applications as antibiotic agents.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">30320216</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2379-5077</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>3</Volume>
<Issue>5</Issue>
<PubDate>
<MedlineDate>2018 Sep-Oct</MedlineDate>
</PubDate>
</JournalIssue>
<Title>mSystems</Title>
<ISOAbbreviation>mSystems</ISOAbbreviation>
</Journal>
<ArticleTitle>Exploration of the Biosynthetic Potential of the
<i>Populus</i>
Microbiome.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e00045-18</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/mSystems.00045-18</ELocationID>
<Abstract>
<AbstractText>Natural products (NPs) isolated from bacteria have dramatically advanced human society, especially in medicine and agriculture. The rapidity and ease of genome sequencing have enabled bioinformatics-guided NP discovery and characterization. As a result, NP potential and diversity within a complex community, such as the microbiome of a plant, are rapidly expanding areas of scientific exploration. Here, we assess biosynthetic diversity in the
<i>Populus</i>
microbiome by analyzing both bacterial isolate genomes and metagenome samples. We utilize the fully sequenced genomes of isolates from the
<i>Populus</i>
root microbiome to characterize a subset of organisms for NP potential. The more than 3,400 individual gene clusters identified in 339 bacterial isolates, including 173 newly sequenced organisms, were diverse across NP types and distinct from known NP clusters. The ribosomally synthesized and posttranslationally modified peptides were both widespread and divergent from previously characterized molecules. Lactones and siderophores were prevalent in the genomes, suggesting a high level of communication and pressure to compete for resources. We then consider the overall bacterial diversity and NP variety of metagenome samples compared to the sequenced isolate collection and other plant microbiomes. The sequenced collection, curated to reflect the phylogenetic diversity of the
<i>Populus</i>
microbiome, also reflects the overall NP diversity trends seen in the metagenomic samples. In our study, only about 1% of all clusters from sequenced isolates were positively matched to a previously characterized gene cluster, suggesting a great opportunity for the discovery of novel NPs involved in communication and control in the
<i>Populus</i>
root microbiome.
<b>IMPORTANCE</b>
The plant root microbiome is one of the most diverse and abundant biological communities known. Plant-associated bacteria can have a profound effect on plant growth and development, and especially on protection from disease and environmental stress. These organisms are also known to be a rich source of antibiotic and antifungal drugs. In order to better understand the ways bacterial communities influence plant health, we evaluated the diversity and uniqueness of the natural product gene clusters in bacteria isolated from poplar trees. The complex molecule clusters are abundant, and the majority are unique, suggesting a great potential to discover new molecules that could not only affect plant health but also could have applications as antibiotic agents.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Blair</LastName>
<ForeName>Patricia M</ForeName>
<Initials>PM</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Land</LastName>
<ForeName>Miriam L</ForeName>
<Initials>ML</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Piatek</LastName>
<ForeName>Marek J</ForeName>
<Initials>MJ</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jacobson</LastName>
<ForeName>Daniel A</ForeName>
<Initials>DA</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Tse-Yuan S</ForeName>
<Initials>TS</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Doktycz</LastName>
<ForeName>Mitchel J</ForeName>
<Initials>MJ</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-4856-8343</Identifier>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pelletier</LastName>
<ForeName>Dale A</ForeName>
<Initials>DA</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>10</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>mSystems</MedlineTA>
<NlmUniqueID>101680636</NlmUniqueID>
<ISSNLinking>2379-5077</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">biosynthetic gene clusters</Keyword>
<Keyword MajorTopicYN="N">natural product biosynthesis</Keyword>
<Keyword MajorTopicYN="N">plant-microbe interactions</Keyword>
<Keyword MajorTopicYN="N">quorum sensing</Keyword>
<Keyword MajorTopicYN="N">rhizosphere-inhabiting microbes</Keyword>
<Keyword MajorTopicYN="N">siderophores</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>04</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>08</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>10</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>10</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>10</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30320216</ArticleId>
<ArticleId IdType="doi">10.1128/mSystems.00045-18</ArticleId>
<ArticleId IdType="pii">mSystems00045-18</ArticleId>
<ArticleId IdType="pmc">PMC6172771</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>ACS Chem Biol. 2017 Sep 15;12(9):2457-2464</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28829573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 Jul 24;349(6246):1254766</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26206939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Aug 2;488(7409):86-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22859206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antibiot (Tokyo). 2005 Jan;58(1):1-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15813176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Apr 29;332(6029):547-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21527704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2017 Feb 07;8:171</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28223976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 Sep 18;5:4950</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25232638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Mar 10;5(3):e9490</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20224823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2016 Nov;12(11):973-979</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27669417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2013 Nov;11(11):789-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24056930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Mar;205(4):1424-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25422041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 May 9;417(6885):141-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12000953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2008 Apr;11(2):161-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18373943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2017 Dec 12;8:2484</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29312193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2001;35:439-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11700290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 2014 Sep 18;21(9):1211-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25237864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):E2450-E2459</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28275097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2008;47(40):7756-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18683268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2016 Aug 1;55(32):9398-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27336908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Nov 16;43(20):9645-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26442528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiome. 2018 Feb 12;6(1):31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29433554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Nov;13(11):2498-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14597658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Feb;76(4):999-1007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20023089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2015 Sep;11(9):625-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26284661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2016 Aug 30;82(18):5698-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27422831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Prod Rep. 2013 Jan;30(1):108-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23165928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Aug;17(8):478-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22564542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nat Prod. 2016 Mar 25;79(3):629-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26852623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2015 Aug;13(8):509-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26119570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2004 Aug;12(8):386-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15276615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2010 Jan;54(1):288-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19884380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2017 May;13(5):470-478</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28244986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stand Genomic Sci. 2015 Oct 26;10:86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26512311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2013;51:17-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23915131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Chem Biol. 2017 Jun 16;12(6):1538-1546</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28406289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2018 Jan;50(1):138-150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29255260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2003 Dec;185(23):6938-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14617658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2006 Jan;59(2):602-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16390453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2009 Jun 17;9:125</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19534812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Dec 20;113(51):14811-14816</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27911822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Mar 19;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2000 Nov;10(11):1719-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11076857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Feb 06;115(6):E1157-E1165</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29358405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 Jul;23(13):3356-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24894495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 Jun;14(6):1188-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15173120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Aug;1854(8):1019-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25900361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 May 24;7(1):2330</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28539610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jul 1;43(W1):W237-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25948579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):3160-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14973198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chembiochem. 2005 Apr;6(4):601-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15719346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 Jun 29;7:1027</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27446062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Sep;77(17):5934-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21764952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PeerJ. 2016 Nov 1;4:e2606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27833797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2016 Aug;92(8):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27279415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2014 Apr 1;53(14):3735-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24591244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 24;124(4):803-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16497589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jun 10;308(5728):1635-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15831718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci China Life Sci. 2017 Aug;60(8):785-796</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28755299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biosyst. 2009 Dec;5(12):1636-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20023723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2014 Nov 27;515(7528):505-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25428498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2013 Aug 19;4:241</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23966991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2015 Oct 14;6:1118</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26528266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2013 Sep;37(5):634-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23790204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2016 Jun 24;291(26):13662-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27151214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2015 Jan 19;4:e05048</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25599565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2017 Jan 17;7:2149</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28144233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1997 Jul 15;36(28):8495-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9214294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2012 Nov;194(21):5991-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23045501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2007 Jul 29;362(1483):1195-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17360275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Jan 20;112(3):857-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25535391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jul;39(Web Server issue):W475-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21470960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D115-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22194640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Oct 16;8(10):e76382</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24146861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mSystems. 2018 Mar 27;3(3):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29600287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2012 May;78(10):3744-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22427492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2014 Feb;80(4):1380-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24334668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2012 May;194(9):2383-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22493196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2017 Aug;38:155-163</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28622659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2013 Sep;79(18):5745-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23851092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Jun;76(11):3568-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20363789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2016 Aug 02;7(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27486195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiome. 2017 Feb 23;5(1):25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28231859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2012 Jun;25(6):765-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22375709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jul;41(Web Server issue):W448-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23677608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 2002 Nov;48(11):955-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12556123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Apr 26;7:497</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27200001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2008 Apr;2(4):345-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18273067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2014 Sep 11;158(6):1402-1414</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25215495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2015 May 13;17(5):603-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25974302</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Tennessee</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Tennessee">
<name sortKey="Blair, Patricia M" sort="Blair, Patricia M" uniqKey="Blair P" first="Patricia M" last="Blair">Patricia M. Blair</name>
</region>
<name sortKey="Doktycz, Mitchel J" sort="Doktycz, Mitchel J" uniqKey="Doktycz M" first="Mitchel J" last="Doktycz">Mitchel J. Doktycz</name>
<name sortKey="Jacobson, Daniel A" sort="Jacobson, Daniel A" uniqKey="Jacobson D" first="Daniel A" last="Jacobson">Daniel A. Jacobson</name>
<name sortKey="Land, Miriam L" sort="Land, Miriam L" uniqKey="Land M" first="Miriam L" last="Land">Miriam L. Land</name>
<name sortKey="Lu, Tse Yuan S" sort="Lu, Tse Yuan S" uniqKey="Lu T" first="Tse-Yuan S" last="Lu">Tse-Yuan S. Lu</name>
<name sortKey="Pelletier, Dale A" sort="Pelletier, Dale A" uniqKey="Pelletier D" first="Dale A" last="Pelletier">Dale A. Pelletier</name>
<name sortKey="Piatek, Marek J" sort="Piatek, Marek J" uniqKey="Piatek M" first="Marek J" last="Piatek">Marek J. Piatek</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B85 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000B85 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30320216
   |texte=   Exploration of the Biosynthetic Potential of the Populus Microbiome.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30320216" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020